污水高纯度净化利用
一、前言
随着工业化和现代化进程的加快,生态环境保护面临着更大的压力和挑战。目前,全国七大水系的重点河段中,82%江河湖泊受到污染,63.1%的河段水质为Ⅳ类、Ⅴ类或劣Ⅴ类,92%的城市面临水污染威胁。据统计全国2002年废水、污水排放量达620×108m3/a,使河流水环境遭到严重破坏。与此同时,我国水资源不足,属世界上13个贫水国家之一,人均水资源量是世界平均水平的1/4,我国600余座城市有400余座缺水,约150座城市实行定时、定量供水。而占全国城镇人口41%和城市工业总产值35%的北方地区,缺水形势更加严峻。日趋严重的水污染使缺水形势显得更为严峻。水污染不仅降低了水体的使用功能,进一步加剧了水资源短缺的矛盾,对我国正在实施的可持续发展战略带来了严重的负面影响,而且还严重地威胁到城乡居民的饮水安全和人民群众的健康。因此,城市污水的再生利用是开源节流、减轻水体污染程度、改善生态环境、解决城市缺水问题的有效途径之一。国家对于生活污水的净化、回用提到政府的议事日程上来。从水资源可持续利用的观点出发,高深度地污水净化是较佳的一种污水回用方式。如广东省的珠江三角洲地区形成了“经济发展-水体污染-水质下降”的恶性循环;太湖流域3000多万人守着2300平方公里的太湖出现了“水多用难”的尴尬局面。目前我国有400多个城市缺水,正常年份缺水达60×108m3,预计2030年缺水量将达到(400~500)×108m3。根据“十五”计划纲要的要求,到2005年我国城市污水集中处理率要达到45%。如污水深度净化后回用率平均达到20%,则“十五”末期污水回用量可达到40×108m3/a,这可解决全国城市缺水量的一半以上。因而开发和应用投资省、见效快、运行成本低的污水深度净化回用处理技术已经成为确保社会经济可持续发展的重大课题。
二、污水高纯度净化工艺流程
污水厂出水(COD100~120mg/l)→生物接触氧化4~8小时→曝气生物滤池→吸附—电解法脱盐、杀菌→纯氧氧化有机物→出水排放达工业用水标准
1、水厂出水还剩下一部分可以生物降解的有机物,这部分有机物只有在高溶解氧条件下由好氧微生物去除。对于生物接触氧化系统来说,自养菌和异养菌会竞争空间和氧气,异养微生物为优势菌,有机物浓度相对偏高,异养菌生长快,氧的供应受到限制,自养菌不可能得到生长,异养微生物为优势菌,有机污染物COD主要在这里被去除;有机污染物浓度沿氧化系统逐渐降低,有机物浓度很低时,异养菌生长受到限制,对氧的竞争能力减弱,通过附着生长,自养菌如硝化细菌就能占优势,氨氮被硝化,在水中溶解氧充分的条件下,水中氨氮在亚硝酸化细菌和硝酸化细菌作用下被硝化成亚硝酸盐和硝酸盐:
亚硝酸化细菌
与此同时,生物接触氧化系统中的异养型微生物氧化分解水中的有机基质,使水的有机物综合指标COD、TOC等降低:
因此当进水是微污染水即污水厂二级出水时,可发生碳污染物的去除和硝化反应。
使用微信“扫一扫”功能添加“谷腾环保网”