媒体/合作/投稿:010-65815687 点击这里给我发消息 点击这里给我发消息 发邮件

为助力环保产业高质量发展,谷腾环保网隆重推出《环保行业“专精特新”技术与企业新媒体传播计划》,七大新媒体平台,100万次的曝光率,为环保行业“专精特新”企业带来最大传播和品牌价值。

    
谷腾环保网 > 新闻信息 > 正文

活性污泥法中泡沫问题的产生与控制技术

更新时间:2009-08-21 15:41 来源: 作者: 丁峰 彭永臻 董文艺等 阅读:2728 网友评论0

摘 要:对国内外活性污泥法中产生泡沫的危害、机理及影响因素的研究结果表明:诺卡氏菌群(Nocardia amarae,Nocardia pinensis),微丝菌(Microthrix parvicella),放线菌(Actinomycetes)的过量增殖是泡沫产生的主要原因。它与温度、pH值、F/M值及底物种类,工艺运行条件密切相关;结合活性污泥动力学、污泥膨胀理论和工程实践,综合控制泡沫的技术措施有:控制MCRT与选择器技术、SFW技术、分类选择器技术和喷洒各种药剂等。
 

关键词:活性污泥法 泡沫控制 细胞平均停留时间(MCRT) 选择器

0 引言

采用活性污泥法处理污水过程中,在反应器(曝气池)与沉淀池内出现的泡沫问题很早就引起人们的关注[1~3]。多年的研究表明:泡沫的产生不仅直接与起沫微生物的类群相关,而且与废水性质(pH、温度、BOD等)、活性污泥状况(MLSS、SVI)、工艺运行条件(如细胞平均停留时间,反应器构型,机械应力,DO,F/M)等有关,产生机理非常复杂。本文在大量查阅中外文献基础上对泡沫产生的普遍性、危害性,特别是其产生的机理和影响因素分别进行了探讨,并给出了较成功的泡沫控制技术措施。

1 泡沫产生的普遍性和危害性  

据1988年对澳大利亚采用活性污泥法的污水处理厂调查后发现:在维多利亚、新南威尔士地区65%的污水厂有泡沫问题[4];在昆士兰地区92%的污水厂受到泡沫的严重影响,这其中60%又受到污泥膨胀的影响[5];美国的108家采用活性污泥法的污水厂中,56%的污水厂受泡沫困扰[6];法国约62%的污水厂产生泡沫;香港5个污水厂有2个由于不良运行产生了泡沫[7];据不完全统计,在我国采用活性污泥法的城市污水处理厂近50%出现过不同程度的泡沫问题,特别在南方地区,还经常与活性污泥法异常运行状态(如丝状菌膨胀,粘性物质积聚成浮渣等)同时发生[8]。  泡沫一般具有粘滞性,它会使大量固体陷入曝气池的漂浮泡沫层,并产生漂浮层的翻转,降低曝气池的充氧效率(特别是机械曝气情况);在纯氧密封活性污泥系统,泡沫会进入氧压机引起火灾;当流入沉淀池时,在沉淀池挡板下会增加出水悬浮固体引起出水水质恶化;泡沫积累还能产生腐败,且在寒冷天气会结冰,影响正常运行;含有泡沫的剩余污泥在厌氧消化中引起严重的起泡现象,损坏厌氧污泥处理工艺。

2 活性污泥性状及泡沫产生机理

 2.1 泡沫的微生物类群组成  

根据澳大利亚维多利亚、新南威尔士及昆士兰地区活性污泥污水厂产生的泡沫问题进行的调查,结果发现,Microthrix parvicella(微丝菌),Nocardia amarae,Nocardia pinensis(诺卡氏菌群)是最常见的泡沫微生物,其次是0092型,0914型,0041型;而美国[9]和香港[10]起泡微生物由多到少的出现频率为Nocardia pinensis,Nocardia amarae,Microthrix parvicella。以上表明,不同地区产生泡沫的微生物类群和数量有差别,但几乎所有地区的泡沫中都检出了占优势的Nocardia菌群;同时还报道[1],在南非、美国、德国、日本膨胀的污泥中发现Nocardia菌群分别占优势丝状菌出现频率的第6、1、14、5位。可见,Nocardia菌群是活性污泥异常运行(膨胀,泡沫)时常出现的微生物。

 2.2 泡沫组成微生物性质及其形成机理  

在活性污泥中经常能观察到的Nocardia菌群是有分支的,直径为0.5μm、革兰氏阳性、产生棕色粘性泡沫的丝状微生物,与其它丝状菌相比,它们虽不直接引起污泥膨胀,但在它们的菌丝中存有气泡,易上浮成泡沫,在反应器或沉淀池表面积存。当混合液中Nocardia≥106 intersections/gVSS时,有害的泡沫就会出现[11]。  研究表明,对含有Nocardia菌群的混合液曝气,75%~90%以上Nocardia丝状菌会上浮形成泡沫,其在泡沫中的浓度极高,要比在混合液中多10~50倍。  泡沫中的微生物需要MCRT较长,N.amarae在完全混合活性污泥中是一个弱竞争者,在缺氧状态下(存在NO-2或NO-3)不生长,N.amarae脱氮作用只能从NO-3和NO-2中进行,且其速度要比许多絮凝体形成细菌低。在严格的厌氧条件下不能生长,也不能吸收含碳物质。

 2.3 影响泡沫形成因素
 
2.3.1 温度  


据研究[6],混合液温度从13℃升至20℃,在给定MCRT下能提高Nocardia菌群数量;从20℃升到25℃之间,其影响不显著;在低温下的泡沫主要由Rhodococcus(红微菌属)引起,N.pinensis则生长于相对窄的温度区间,并且许多生长于40℃或更高的热污水或周围空气高温的环境中产生泡沫[12]。而对于引起污泥膨胀和泡沫的其它放线菌,从10升至20℃,其生长速率加快1/2倍;低温及无论有无选择器的完全混合系统有利于M.parvicella的生长[13]。
 
2.3.2 pH值  

通过对单一底物的研究认为,Nocardia与Rhodococcus菌种的最佳pH值为7.0~8.5;空气曝气活性污泥混合液最优pH为7.0,氧气曝气的为6.5(因为混合液接触的气相含有较高的CO2)。也有人指出,pH值降低(如硝化作用)不利于Nocardia菌的生长,能引起泡沫的明显减少。

2.3.3 F/M值与底物种类  

通过对丝状菌的研究表明:在较高的F/M下一般可控制丝状菌引起的污泥膨胀,但Nocardia菌所占的数量上升约6%,几乎在丝状菌中占绝对优势,并且泡沫也迅速出现;其它放线菌在(微环境中)高底物浓度(如为液相中的100倍以上)下也会大量增殖(亦即μmax增长规律和高的Ks值),产生泡沫。这样高的底物浓度可能存在于如下微环境中:  ①在污泥絮体与水之间的界面上,其上吸附了进水的有机负荷并予以蓄积;  ②在污泥絮体中存在死的细胞,它能使其它种细菌进行腐生增殖;  ③在不溶性的底物与水之间的界面上,如同跟水中的疏水物质那样;  ④在水与气的界面上(表面和气泡),在其上底物可通过表面活性物质而积累。  此外,底物的种类与泡沫的产生也有许多相关关系。经过对香港Vitro污水厂产生泡沫的调查发现:分支丝状菌N.amarae是主要泡沫微生物,且脂肪酸是其唯一碳源,它的存在能增加N.amarae的增长[7]。  跟相似于Nocardia菌的放线菌不同,M.Parvicella丝状菌具有很高的比营养需求量,这种微生物喜欢长链脂肪酸如油酸做为其碳源。因此,在含有高负荷脂、油和皂类的情况下,有优先繁殖M.Parvicella菌的危险[13];特定不生物降解或仅缓慢生物降解的表面剂浓度和疏水性底物会导致放线菌Actinomycetes的过量增殖[14]。  非离子表面活性剂广泛应用于工业、商业、日常生活等领域,如美国的城市排水中其浓度为1~20mg/L,美国研究者对Igepa1C-620和Neodo125-7两种表面活性剂的研究结果表明,缓慢可生物降解的表面活性剂能显著增加含Nocardia菌群污泥中的泡沫。且泡沫呈典型的褐色,包含和吸收较高的悬浮固体(SS),并增加了混合液高度。其他人也证实,表面活性剂,类脂化合物,几种疏水难降解颗粒底物能引起放线菌的增殖,导致反应器和沉淀池表层产生泡沫浮渣。

2.3.4 运行条件  

观察发现,离心循环泵产生的机械应力损坏密实的活性污泥絮状体,从破损的细胞中释放出来的表面活性蛋白质、类脂化合物(有限长链脂肪酸)的增多,能导致放线菌、微丝菌的增殖,产生过量泡沫[2];在瑞典的大斯德哥尔摩(Great Stockholm)地区的3个污水厂出现了严重的厌氧消化泡沫,显微镜观察的结果是泡沫污泥表现出网状丝状菌M.Parvicella结构,形态上长的圈状丝状菌因厌氧条件变成了短和细的丝状菌[15]。

3 泡沫控制技术

3.1 控制MCRT与选择器技术  

根据组成,泡沫微生物性质和成泡机理,使采用调节MCRT和选择器相结合的技术控制泡沫成为可能。首先,对Nocardia的控制方面,根据N.amarae菌群在完全混合活性污泥中是一个弱竞争者,且反硝化很慢的特点,提出在适当的MCRT值时,用好氧选择器可有效控制Nocardia泡沫[16];减少MCRT是一种成功的控制泡沫方法[17];也有人研究报道,可通过降低MCRT去除N.amarae泡沫,他们对一个采用活性污泥法的污水厂采用MCRT<6d,同时回流活性污泥加氯成功地控制了Nocardia泡沫。在文献[9]中的研究结果是:从MCRT由1.5d到15d范围内,MCRT升高,Nocardia菌群普遍升高,并且MCRT=2d,能有效控制Nocardia菌泡沫;MCRT=5d,用好氧选择器控制Nocardia菌泡沫有效;MCRT=10d,用好氧选择器控制Nocardia菌泡沫无效;MCRT=12d,用缺氧选择器可控制硝化污泥中的Nocardia菌泡沫。  另外,MCRT的采用还与温度(气候)及试验规模等因素有关,他们的试验结果见表1,由表1可见,不论是小试或生产性试验规模,温度升高,采用的MCRT值降低。
                                                                                                 

                                            表1 控制Nocardia泡沫时MCRT与温度关系

试验规模

小试

小试

生产性试验(夏季)

生产性试验(冬季)

温度/℃

16 

24 

22 

18 

MCRT/d

2.2

1.6

1.8

2.2

在美国,根据Nocardia菌产生泡沫的具体情况,采用不同MCRT控制泡沫的污水厂数目统计结果见图1。

                                          图1 美国控制Nocardia泡沫时采用不同MCRT值的污水厂数目统计(部分)

同时,以上泡沫控制技术还可与控制污泥膨胀等活性污泥异常运行情况相结合,综合调节活性污泥运行工艺。如针对Phonenix活性污泥污水厂一直存在着在连续的膨胀污泥环境下,相当低的MLSS和SRT较短的情况下运行状况,采用DO为0~0.3mg/L的缺氧选择器,结果:当总氮还原约75%时,曝气的缺氧选择器可以对污泥的膨胀全部控制;Nocardia泡沫可以初步控制,在泡沫表面直接喷洒高浓度的氯(2 000~3 000mg/L)很容易消除泡沫[18]。  

在类脂化合物、疏水难降解的颗粒底物以及机械应力、接种等条件时易引起放线菌的污泥膨胀和泡沫上浮。一些人认为,任一MCRT下的放线菌及0092型均能引起低负荷膨胀和上浮;而另一些人则证实,低的MCRT(<6d)、用缺氧选择器成功地抑制了放线菌的上浮和低负荷膨胀与泡沫上浮;还有人的研究结果是,用缺氧选择器或厌氧选择器不能有效控制M.Parvicella的生长[13];也有人用好氧选择器在低的固体停留时间(SRT)和缺氧选择器在任何SRT条件下都可以控制放线菌的过量增长[19]。

3.2 选择性泡沫浮选或淘汰(SFW)  

SFW法是将载有Nocardia等起沫微生物泡沫溢流至系统外以得以去除。用带有自由液面的40L曝气池和设挡板的二沉池进行试验的结果是[20]:20d后,Nocardia丝状菌达到11×106 intersections/gVSS;以后15d内,其值在9×106~11×106之间波动,去除二沉池挡渣板23d后,Nocardia菌数量降至1×106~2.5×106之间,重装消泡装置72d后,Nocardia数量又增加到6×106。他们认为,这主要是由于延长了MCRT,使之高于混合液中其它微生物的原因。后者在亚特兰大Utoy Greet的WPCP污水厂研究表明,使用增加曝气量,控制MCRT,以从混合液中去除起泡微生物,允许载有Nocardia的泡沫从曝气池中溢流到相邻池子里去除,得到很好的泡沫去除效果[21]。1987年在南非通过选择性浮选,泡沫(浮渣)形成微生物可在24h内大量从活性污泥中去除掉[22]。泡沫去除后,生物相中的丝状菌明显减少,而去除的泡沫中几乎都是丝状菌,大于95%的泡沫微生物能在最初的约4h内去除;去除速度不取决于Nocardia泡沫微生物种类,但依赖于初始泡沫中的微生物浓度。在一些文献中报告的其它经验也肯定了这种措施是成功的。

3.3 其它方法  

添加化学药剂(如Cl2,H2O2,O3,聚合Al盐等)和上部搅拌[15]也是控制泡沫的常用方法。有报道,通过在曝气池中添加O3(2~6mg/L)成功地抑制了Nocardia菌不正常增殖产生的泡沫。并且还发现[23]:污泥沉降性能好转了,在去除COD,TOC,SS,PO3-4 -P,TN方面无不同,硝化作用增强了,出水水质变好。  向出现严重Nocardia泡沫的terminal污水厂反应器中投加阳离子聚合物,3d后泡沫根除,其机理是:投加的阳离子聚合物与废水表面存在的稳定泡沫的接触作用和聚合物絮凝使Nocardia丝状菌分散进入活性污泥絮体中[24]。  采用去除表层泡沫的分类选择器,可减少Nocardia的含量;向选择器中添加可降解的非离子表面活性剂可进一步降低混合液中的Nocardia水平。

4 结论  

活性污泥工艺中产生泡沫的机理和影响因素是复杂的,并且经常与污泥膨胀等异常情况同时出现[25~26]。因此,应该根据具体情况采用相应不同的控制技术。美国部分活性污泥污水厂控制Nocardia泡沫的策略及其成功率[6]如表2所示。有趣的是,其中58家污水厂直接用水喷洒泡沫,收到了很高的成功率(88%),当然,若停止喷洒水,泡沫又会重新出现。
                                                  表2 美国活性污泥污水厂控制泡沫的策略及成功率(部分)

泡沫控制策略

策略使用污水厂数目

成功率/%

降低MCRT

44

73

投加氯气

48

58

用水喷洒

58

88

用消泡剂

35

20

降低曝气时间

5

60

综合上述,控制活性污泥法中产生的泡沫问题,应根据活性污泥运行理论,结合工程实践全面分析其产生的机理,并考虑控制措施的经济性、技术性、可行性等因素来采用相应措施(一种或多种),才能经济、合理、彻底地解决活性污泥工艺中的泡沫问题。

参考文献:

[1]W A Pretorious,C J P Laubscher.Control of biological scum in activated sludge plants by means of selective flotation.Wat Sci Tech,1987,19.1003~1011

[2]Jurg Kappeler,Willi Gujer.Inflences of wastewater composition and operating conditions on activated sludge bulking and scum formation.Wat Sci Tech,1994,30(11):181~189

[3]Peter Kampfer,Diethelm Weltin,et al.Research note on growth requirements of filamentous bacteria isolated from bulking and scumming sludge.Wat Res,1995,29(6):1585~1588

[4]E M Seviour,C J Williams,R J Seviour,J A Soddel,K C Lindrea.A survey of filamentous bacterial populations from foaming activated sludge plants in eastern states of Australia.Wat Res,1990,24(4):493~498

[5]Linda L Blackall,Anne E Harbers,P F Greenfield,A C Hayward.Foaming in activated sludge plants:A survey in Queensland,Australia and an evaluation of some control strategies.Wat Res,1991,25(3):313~317

[6]Paul Pitt,David Jenkins.Causes and control of Nocardia in activated sludge.Res Journal WPCF,1990,62(2):143~150

[7]H Chua,K Y Le.A survey of filamentous foaming in activated sludge plants in Hong Kong.Wat Sci Tech,1994,30(11):251~254

[8]王凯军.活性污泥膨胀的机理与控制.北京:中国环境科学出版社,1992

[9]Daniel K Cha,David Jenkins,William P Lewis,Wendell H Kido.Process control factors influencing Nocardia populations in activated sludge.Wat Envir Res,1992,64(1):37~43

[10]Manfred Ziegler,Martina Lange,Wolfgang Dott.Isolation and morphological and cytological characterization of filamentous bacteria from bulking sludge.Wat Res,1990,24(12):1437~1451

[11]David Jenkins.Towards a comprehensive model of activated sludge bulking and foaming.Wat Sci Tech,1992.25

[12]Jacques A Soddell,Robert J Seviour.Relationship between temperature and growth of organisms causing Nocardia foams in activated sludge plants.Wat Res,1995,29(6):1555~1558

[13]D Mamais,A Andreadakis,et al.Causes of,and control strategies for,MICROTHRIX PARVICELLA bulking and foaming in nutrient removal activated sludge systems.Wat Sci Tech,1998.37

[14]Y J Shao,Mark Starr,et al.Polymer addition as a solution to Nocardia foaming problems.Wat Environ Res,1997.69

[15]Asa Dillner Westlund,Eva Hagland.Foaming in anaerobic digesters caused by MICROTHRIX PARVICELLA.Wat Sci Tech,1998.37

[16]Lindal Blackall,Valter Tandoi,David Jenkins.Continuous culture studies with Nocardia amarae from activated sludge and their implications for Nocardia foaming control.Res journal WPCF,1991.63

[17]C Hanson,K Atasi,J Packman,E Singleton,A Glymph.A case study -relating activated sludge nutrient loakings to the appearance of Nocardia spp.Foaming.Wat Sci Tech,1992.26

[18]O E Albertson,P Hendricks.Bluking and foaming organism control at Phoenix,AZ WWTP.Wat Sci Tech,1992.26

[19]J Kappeler,W Gujer.Scumming due to actinomycetes:Towards a better understanding by modelling.Wat Res,1994.28

[20]D K Cha,et al.Discussion of process control factors Influencing Nocardia populations sludge.Wat Envir Res,1993.65

[21]Tyler Richards,Phil Nungesser,Carl Jones.Solution of Nocardia foaming problems.Res Journal WPCF,1990.62

[22]杨宝林.活性污泥膨胀的特性研究.中国给水排水,1993,9(5):32~34

[23]M Goi,T Nishimura,S Kuribayashi,T Okouchi,T Murakami.An experimental study to suppress scum formation accompanying the abnormal growth of Nocardia by adding ozone in the aeration tank.Wat Sci Tech,1994.30

[24]Chu-Fei Ho,David Jenkins.The effect of surfactants on Nocardia foaming in activated sluge.Wat Sci Tech,1991.23

[25]周利,彭永臻,等.丝状菌污泥膨胀的影响因素与控制.环境科学进展,1999,7(2):88~93

[26]崔和平,彭永臻,等.关于污泥膨胀研究的现状与展望.哈尔滨建筑大学学报,1997,30(3):113~116

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。

  使用微信“扫一扫”功能添加“谷腾环保网”

关于“活性污泥法中泡沫问题的产生与控制技术 ”评论
昵称: 验证码: 

网友评论仅供其表达个人看法,并不表明谷腾网同意其观点或证实其描述。

2022’第九届典型行业有机气(VOCs)污染治理及监测技术交流会
2022’第九届典型行业有机气(VOCs)污染治理及监测技术交流会

十四五开篇之年,我国大气污染防治进入第三阶段,VOCs治理任务…

2021华南地区重点行业有机废气(VOCs)污染治理及监测技术交流会
2021华南地区重点行业有机废气(VOCs)污染治理及监测技术交流会

自十三五规划以来,全国掀起“VOCs治理热”,尤…

土壤污染防治行动计划
土壤污染防治行动计划

5月31日,在经历了广泛征求意见、充分调研论证、反复修改完善之…